Home » News & Blogs » Ask Ethan: Why Did Light Arrive 1.7 Seconds After Gravitational Waves In The Neutron Star Merger? (Synopsis)
Bookmark and Share
Starts With A Bang!

Ask Ethan: Why Did Light Arrive 1.7 Seconds After Gravitational Waves In The Neutron Star Merger? (Synopsis)

28 Oct 2017, 14:18 UTC
Ask Ethan: Why Did Light Arrive 1.7 Seconds After Gravitational Waves In The Neutron Star Merger? (Synopsis)
(200 words excerpt, click title or image to see full post)

“Delay is the deadliest form of denial.” -C. Northcote Parkinson
Every massless particle and wave travels at the speed of light when it moves through a vacuum. Over a distance of 130 million light years, the gamma rays and gravitational waves emitted by merging neutron stars arrived offset by a mere 1.7 seconds, an incredible result! Yet if the light was emitted at the same time as the merger, that 1.7 second delay shouldn’t be there, unless something funny is afoot.
In the final moments of merging, two neutron stars don’t merely emit gravitational waves, but a catastrophic explosion that echoes across the electromagnetic spectrum. The arrival time difference between light and gravitational waves enables us to learn a lot about the Universe. Image credit: University of Warwick / Mark Garlick.
While your instinct might be to attribute an exotic cause to this, it’s important to take a look at “mundane” astrophysics first, such as the environment surrounding the neutron star merger, the mechanism that produces the gamma rays, and the thickness of the matter shell that the gamma rays need to travel through. After all, matter is transparent to gravitational waves, but it interacts with light all the time! ...

Latest Vodcast

Latest Podcast

Advertise PTTU

NASA Picture of the Day

Astronomy Picture of the Day

astronomy_pod