Home » News & Blogs » Can Muons – Which Live For Just Microseconds – Save Experimental Particle Physics? (Synopsis)
Bookmark and Share
Starts With A Bang!

Can Muons – Which Live For Just Microseconds – Save Experimental Particle Physics? (Synopsis)

7 Apr 2017, 14:01 UTC
Can Muons – Which Live For Just Microseconds – Save Experimental Particle Physics? (Synopsis)
(200 words excerpt, click title or image to see full post)

“It does not matter how slowly you go as long as you do not stop.” -Confucius
The large hadron collider is the world’s most powerful particle accelerator, colliding two protons at energies of 6.5 TeV apiece. But you’ll never have the full 13 TeV of energy available for that collision, thanks to the fact that the proton itself is a composite particle, and that energy is distributed throughout its components. When you get a collision, only a fraction of that energy goes into the collision itself, while the rest remains in the other component particles.
A candidate Higgs event in the ATLAS detector. Note how even with the clear signatures and transverse tracks, there is a shower of other particles; this is due to the fact that protons are composite particles. Image credit: ATLAS Collaboration / CERN.
The way around this is to use fundamental particles. The electron is no good, because it loses too much energy when you accelerate it in a magnetic field; it’s charge-to-mass ratio is too high. But the electron has a high-mass cousin, the muon, that’s 206 times as massive. Even though the muon only lives for microseconds, the right accelerator might be able to ...

Latest Vodcast

Latest Podcast

Advertise PTTU

NASA Picture of the Day

Astronomy Picture of the Day

astronomy_pod